Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest.

نویسندگان

  • Christopher W Dick
  • Gabriela Etchelecu
  • Frédéric Austerlitz
چکیده

Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic rescue of remnant tropical trees by an alien pollinator.

Habitat fragmentation is thought to lower the viability of tropical trees by disrupting their mutualisms with native pollinators. However, in this study, Dinizia excelsa (Fabaceae), a canopy-emergent tree, was found to thrive in Amazonian pastures and forest fragments even in the absence of native pollinators. Canopy observations indicated that African honeybees (Apis mellifera scutellata) were...

متن کامل

Spatial genetic structure in Milicia excelsa (Moraceae) indicates extensive gene dispersal in a low-density wind-pollinated tropical tree.

In this study, we analysed spatial genetic structure (SGS) patterns and estimated dispersal distances in Milicia excelsa (Welw.) C.C. Berg (Moraceae), a threatened wind-pollinated dioecious African tree, with typically low density (approximately 10 adults/km(2)). Eight microsatellite markers were used to type 287 individuals in four Cameroonian populations characterized by different habitats an...

متن کامل

Contemporary pollen and seed dispersal in natural populations of Bertholletia excelsa (Bonpl.).

Due to the nutritional content and commercial value of its seeds, Bertholletia excelsa is one of the most important species exploited in the Amazon region. The species is hermaphroditic, insect pollinated, and its seeds are dispersed by barochory and animals. Because the fruit set is dependent on natural pollinator activity, gene flow plays a key role in fruit production. However, to date, ther...

متن کامل

Forest fragmentation severs mutualism between seed dispersers and an endemic African tree.

Because bird species are lost when forests are fragmented into small parcels, trees that depend on fruit-eating birds for seed dispersal may fail to recruit seedlings if dispersal agents disappear. We tested this prediction in rainforest in the East Usambara Mountains of Tanzania, by using the endemic tree Leptonychia usambarensis (Sterculiaceae) and birds that disperse its seeds. We investigat...

متن کامل

Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus).

Abstract Pleistocene fragmentation of the Amazonian rainforest has been hypothesized to be a major cause of Neotropical speciation and diversity. However, the role and even the reality of Pleistocene forest refugia have attracted much scepticism. In Amazonia, previous phylogeographical studies have focused mostly on organisms found in the forests themselves, and generally found speciation event...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular ecology

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2003